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Abstract 

A recently formulated method of deriving exact Four- 
ier-series representations of joint probability density 
functions (p.d.f.'s) of several normalized structure 
factors is applied to the derivation of an exact 
expression for the conditional probability that the 
sign of the triple product EhEkEh+k is positive. The 
relevant joint and conditional probabilities are 
derived for the space group P1. The Fourier 
coefficients of the p.d.f, are given by rapidly conver- 
gent series of Bessel functions, and the convergence 
properties of the Fourier summations are also found 
to be favourable. The exact conditional probability 
is compared with the currently employed approxi- 
mate one, well known as the hyperbolic tangent for- 
mula, for several hypothetical structures. The 
examples illustrate the effects of the number of atoms 
in the unit cell, the magnitude of the E values and 
the atomic composition on the exact and approximate 
probabilities. It is found, in agreement with previous 
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studies, that the hyperbolic tangent formula may 
indeed significantly underestimate the probability 
when the number of equal atoms is small and the E 
values are only moderately large, and when the struc- 
ture contains outstandingly heavy atoms. The 
opposite behaviour, i.e. the approximate probability 
overestimating the exact one, was not observed in the 
present calculations. For large values of the triple 
product in equal-atom and heterogeneous models, 
the agreement between the approximate and exact 
probabilities is usually good. 

Introduction 

The well known hyperbolic-tangent formula, from 
which the probability for the positive sign of a triple- 
product structure invariant is conventionally esti- 
mated, is one of the most important relationships in 
applications of direct methods to sign determination. 
The current version of the relationship is based on 
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that derived for unitary structure factors by Cochran 
& Woolfson (1955), who invoked the central limit 
theorem (e.g. Cramrr, 1951) for the purpose of this 
and related derivations. This form of the conditional 
probability for the positive sign of the triple product 
EhEkEh+k, given its magnitude, is therefore a low- 
order approximation. 

Generalizations of the joint probability density 
function (p.d.f.) of Eh, Ek and Eh÷k, as well as those 
of the conditional probability for the positive sign of 
the triple product, have been rather extensively 
investigated (e.g. Klug, 1958; Karle, 1972; Katie & 
Gilardi, 1973; Giacovazzo, 1977). All of these studies 
lead to improved formulae for the joint and condi- 
tional probabilities, but the extent of the improvement 
is not certain since they are all based on truncated 
expansions of the Edgeworth or related series. Similar 
uncertainties were experienced in studies of the sim- 
pler univariate generalized p.d.f.'s (e.g. Shmueli, 
1982), and these were first resolved by the use of 
random-walk techniques that permit one to obtain 
exact expressions for probability densities of I EI 
(Shmueli, Weiss, Kiefer & Wilson, 1984). These tech- 
niques were further extended to the multivariate case 
and a preliminary account of the work on this topic 
has been published (Weiss, Shmueli, Kiefer & Wilson, 
1985). 

A rather detailed outline of the general procedures 
involved in the derivation of exact joint p.d.f.'s of 
several structure factors, illustrated by a derivation 
of an exact Y~ relationship for the space group P1, 
is given by Shmueli & Weiss (1985). In view of the 
importance of the triple-product sign relationship, it 
seems desirable to apply the method described in the 
latter reference to the derivation of an exact joint 
p.d.f, of Eh, Ek and Eh÷k, and use it in the construction 
of an exact expression for the conditional probability 
for the positive sign of their product. The derivation 
of such an expression is of interest for its own sake, 
and may provide reliable answers to several questions. 
It has been pointed out that the usual hyperbolic 
tangent formula is an underestimate of an improved 
expression for this conditional probability (Karle, 
1972). This is deafly important, as far as sign-accept- 
ance criteria are concerned, and an exact expression 
for this probability could usefully show the actual 
extent of this underestimation. The discrepancy 
between the exact and approximate conditional prob- 
abilities is also bound to depend on the magnitudes 
of the E values, on the number of atoms in the unit 
cell and on the atomic composition. A clarification 
of these matters is of theoretical importance, and may 
well be of practical significance since it can lead to 
better-established sign-acceptance criteria, for use 
with the conventional hyperbolic tangent formula. 

The statistical background of the present method 
is briefly summarized in Appendix A, in which we 
try to place it in the perspective of the conventional 

formalism of mathematical statistics. The next section 
deals with the derivation in the space group P1 of 
the joint p.d.f, of three normalized structure factors 
that form a structure invariant. This derivation is 
followed by that of an exact conditional probability 
for the positive sign of the corresponding triple prod- 
uct, and we conclude with some numerical examples 
of the above announced results, a comparison with 
those given by the conventional hyperbolic tangent 
formula (Cochran & Woolfson, 1955) and a dis- 
cussion in view of the questions stated above. 

The ~z relationship in Pi  

The present derivation is an application of our 
method for the construction of exact joint p.d.f.'s of 
several structure factors for centrosymmetric space 
groups, presented elsewhere (Shmueli & Weiss, 1985). 
We shall also follow the notation of the latter refer- 
ence, as well as the set of underlying assumptions 
there outlined. 

We derive an exact expression for the probability 
that the sign of the triple product EhEkEh+k is positive, 
given the magnitudes of the structure factors involved 
and assuming the space group Pi. As shown else- 
where (Shmueli & Weiss, 1985), we can conveniently 
start from the characteristic function of the joint p.d.f. 
of Eh, Ek and Eh+k which, for the above space group, 
is given by 

C(to)=(exp[i(w~Eh+tO2Ek+wsEh+k)]) (1) 

= exp 2i nj[tol cos Oj + to2 cos ~j 
j = l  

"[-tO3 COS (Oj-[-~j)]ll ( 2 )  

N/2 
= II G ( o ) ,  (3) 

j = l  

where N is the number of atoms in the unit cell, nj 
is the normalized scattering factor, 0j = 2wh. rj, ~pj = 
2wk. rj and 

Cj(to) = (4~2) -1 S~ exp{2inj[toi cos 0+to2 cos 
-,w 

+ to3 cos ( 0 + ~ ) ]} dO d~ (4) 

is the atomic contribution to the characteristic func- 
tion. Equation (2) is a version of the general form of 
the characteristic funtion [Shmueli & Weiss, 1985, 
equation (8)], adapted to the present problem. As in 
the latter study, we assume that the contributions of 
different atoms in the asymmetric unit are indepen- 
dent, and the atomic phase factors 0j and Cj can be 
taken as uniformly distributed over the [0, 2~r] range. 
The latter assumption is usually valid if all the atoms 
are located in general positions and effects of rational 
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dependence (Hauptman & Karle, 1959) are negli- 
gible. More fundamental aspects of this assumption, 
pertaining to whether h or r is taken as the primitive 
random variable, are discussed in the literature (e.g. 
Hauptman & Karle, 1953; Karle & Gilardi, 1973; 
Giacovazzo, 1980). 

The integral in (4) can be reduced to series form 
with the aid of the identity 

exp (ix cos/3)= ~ ikJk(X) exp (ik/3) (5) 
k = - o o  

[Gradshteyn & Ryzhik, 1980, entry: 8.511(4)], which 
leads to a straightforward integration over the angles 
0 and ~ in (4). We obtain 

where 

and 

G (to) -- Rj (to) ÷ i/j (to), 

3 

Rj(to)= I-I Jo(2n/ok) 
k = l  

(6) 

co 3 

+2 Y. (-1) m 1-I Jz~(2njtok) (7) 
m = l  k = l  

co 3 

/j(to)=2 3-'. (-1)m+~ 1- I J2m+,(2njtok). (8) 
m = 0  k = l  

The characteristic function (1) can now be written 
a s  

N / 2  

C(to)= 1-I [Rj(to)+iLj(to)]=R(to)+iI(to), (9) 
j----1 

where use is made of (6)-(8) and (3). 
As shown elsewhere (Shmueli & Weiss, 1985), the 

Fourier coefficients of the required p.d.f, can be 
obtained by replacing the variables to~ in the charac- 
teristic function with quantities related to the 
appropriate summation indices. In the present appli- 
cation we put 

0 ) 1 " - >  7 F t ~ r ,  (.o2---> 7ras and tOa~ Trot, (10) 

where r, s, t are the indices of the (triple) Fourier 
series for the required p.d.f, and 

N 

1/a = Emax = Y~ nj (11) 
j = l  

is the maximum magnitude of E, by virtue of which 
the Fourier expansion of the p.d.f, becomes meaning- 
ful (e.g. Shmueli, Weiss, Kiefer & Wilson, 1984; 
Shmueli & Weiss, 1985). Introducing the abbreviation 

q r s t  = q( Trotr, 7ras, 1rat), (12) 

we can write the joint p.d.f, as 

p(E~, E2, Ea) = (a3/8) Y~ ~ Y. ( g~t + iLs,) 
r S t 

+exp [-i(rEl+sE2+ tE3), (13) 

where E1 = ~raEh, E2 = ~raEk, E3 = "/rOtEh+k and, of 
course, only the real part of (13) is relevant. 

The Fourier series in (13) can be reduced to a 
summation over the non-negative octant of the rst 
index space, when use is made of the symmetry 
properties of the trigonometric functions, as well as 
those of Rrs, and Its,. The latter are found by a direct 
inspection of (7)-(9), with the aid of some basic 
properties of Bessel functions J,(x) of integer order 
(e.g. Abramowitz & Stegun, 1972), to be 

(i) Rrs, is symmetric in all three indices (i.e. 
invariant to their sign changes), and 

(ii) Its, changes its sign when one or three indices 
change sign(s), and is symmetric with respect to the 
change of signs of two indices. 

The simplification of (13) follows in much the same 
way as the simplification of expressions for the elec- 
tron density, for given symmetries of the reciprocal 
lattice (e.g. International Tables for X-ray Crystal- 
lography, 1952); drawing an analogy between the rst 
and hkl Fourier spaces, Rrs, and Ls, can be said to 
possess symmetries isomorphic to mmm and 222 
respectively. 

Making use of these symmetry considerations, we 
obtain 

p(E1, E2, E3)=(aa/8)(pev~,+Podd), (14) 

where 
co 

p~wn = 1 +2 Y. Rroo[COS (rE1)+cos (rE2)+cos (rEa)] 
r = l  

oo ov 

+4 ~ ~ R~so[COs(rE1)cos(sE2) 
r = l s = l  

+cos (rE~) cos (sE~) + cos (rE3) cos (sE,)] 
oo oo co 

+8 ~'. ~'. ~'. R~tcos(rE1) cos(sE2)cos(tE3) 
r = l  s = l  t = l  

(15) 
and 

Podd = - 8  2 Y. L,,sin(rEOsin(sE2) sin(tE3). 
r = l  s = l  t = l  

(16) 

Clearly, the Peven component is independent of the 
sign of the triple product, while the sign combinations 
' - + + ' ,  ' + - + ' ,  ' + + - '  and ' - - - ' ,  which lead to nega- 
tive triple products, also reverse the sign of Podd in 
(16). The ratio of the probabilities for negative and 
positive triple products is therefore given by 

p_(h, k, h+k) 
p+(h, k, h+k)  

P e v e n ( E h ,  E k ,  Eh+O--Podd(IEul, lEd, IEu+kl) (17) i 

P,ve,(Eh, Ek, Eh+k) + Podd(lEd, lEd, ]Eh+d) 

and since 

p+--p+/(p+ +p_) -- (1 +p_/p+)-i (18) 
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(Bertaut, 1955), the required probability that the triple 
product EhEkEh+k is positive is given by 

1 Podd(IEd, IEkl, IEh+kl) q 
p + ( h , k , h + k ) =  2 1-t ~ ~ - ~ k ~ , ~ J '  (19) 

where Peve, and Podd are defined by (15) and (16) 
respectively. 

It should be pointed out that, since for any non-zero 
integer n, J , ( 0 ) = 0  and Jo(0)=l ,  the 'special' 
coefficients in (15) are given by 

N/2 

groo = H Jo(27rrt~nj) (20) 
j = l  

and 
N/2 

R,so = H lo(2zrrt~nj)lo(2~somj), (21) 
j = l  

since the infinite series of products of Bessel functions 
in (7) then vanishes identically. This is also the reason 
for the absence of such special coefficients from Podd 
in (16). These series of Bessel functions converge 
after the first few terms, and the convergence 
behaviour of (15) and (16) is also very good (see next 
section). 

Equations (14) and (19) are exact. It is possible to 
rederive from the present results the classical 
asymptotic expression for the probability, i.e. 

P+(h,k,h+k)=½+½tanh[(tr3/~rs2/2)lEhEkEh+kl], (22) 
N m where tr,,=Y.i__~f j (Hauptman & Karle, 1953; 

Woolfson, 195it; Cochran & Woolfson, 1955). We do 
not present here the details of this rederivation, since 
it follows very closely an analogous treatment of the 
probability for the positive sign of E2h, given the 
moduli led and IE=d (see Shmueli & Weiss, 1985, 
Appendix A). As in the latter study, the above rederi- 
vation is based on approximating the characteristic 
function by its lowest-order terms, and recalculating 
the approximate joint p.d.f, by a Fourier inversion. 

Test calculations and discussion 

In this section we compare some calculations of well 
converged results corresponding to (19) with the 
hyperbolic tangent approximation (22), for several 
hypothetical P i  structures defined in terms of their 
composition. The effects that we would like to illus- 
trate are those due to (i) the number of atoms in the 
asymmetric unit, (ii) the magnitudes of the E values 
and (iii) atomic heterogeneity of the structure. Of 
course, only a very limited number of combinations 
of the various parameters is possible within the scope 
of this paper, and the illustrations are by no means 
exhaustive. 

All the numerical computations have been pro- 
grammed in Fortran, and use has been made of a 
local library subroutine for the generation of Bessel 

functions of general order. As can be seen from (7) 
and (8), such a subroutine is an important prere- 
quisite; its stability is usually achieved by a judicious 
use of forward and backward recursion techniques. 
A straightforward summation of the Fourier series, 
with computed arrays of sines and cosines only, 
required approximately 0-3 s for each triple product 
examined. The computation of the Fourier 
coefficients needs to be done only once for a given 
structure, and is the least-time-consuming stage also 
because of the excellent convergence properties of 
the series of Bessel functions in (7) and (8); for 
equal-atom structures only three or four terms are 
needed for a cutoff ratio of 10 -5, while more may be 
required in the presence of heavy atoms. The number 
of terms in a single Fourier summation required to 
achieve a comparable accuracy was found to be at 
least 15, and more than that if the number of atoms 
in the asymmetric unit is very small. The computing 
time should be reduced by the use of a fast Fourier 
algorithm. 

The composition of the asymmetric unit was taken 
as C,Xm, where X may be carbon or a heavier atom, 
and all the composition-dependent quantities that are 
required for the computation of (7), (8) and (22) were 
expressed in terms of the numbers n and rn of the 
atoms, and the ratio of their atomic numbers, p = 
Zx/Zc .  For example, 

(~r3/trS/Z)=2(nf3 + mfSx)/[2(nf2 + mf2)] 3/2 

= 2(n + mp3)/[2(n + mp2)] 3/z 

(cfi Shmueli & Weiss, 1985). 
Figs. l (a )  and (b) show the probability for a posi- 

tive sign of the triple product for the compositions 
C32 and C3oK. r2  respectively, assuming ]E hi = led = 
1.50 and letting IE +d range from 1.0 to 3.0. It is seen 
that for the equal-atom case (Fig. la )  the two proba- 
bilities run quite close to each other, with the dis- 
crepancy increasing slightly with increasing value of 
the triple product. The 'replacement' of two carbons 
by kryptons (Z = 36) enhances strongly both exact 
and approximate probabilities (Fig. lb), but also 
leads to more serious discrepancies at the low values 
of the triple product. Taking p+ = 0.95 as a tentative 
threshold of acceptability, it is seen that the exact 
expression (19) would admit significantly lower I EI 
values than would the hyperbolic tangent formula 
(22). 

The effect 
rather small 
Fig. 2. The 

of the magnitude of the E values, for a 
asymmetric unit, C~o, is illustrated in 
discrepancy between the exact and 

approximate expressions seems to decrease as the 
value of the triple product increases, and the region 
of maximum discrepancy moves towards lower values 
of IE.+d as the values of IEhl and led increase. It 
should be pointed out that the probability computed 
from (19) is practically unity throughout the range: 
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"° I ~ + + . . ~ ' +  

I i ! i i I I I i i i i I i i I I I I i i 

I 2 3 

(a) 

i.o F + ÷ ÷ + + + + + + ~  

, 

0 " 6 ~ 1  i i i i i i i i i i i i i i i i i i i I 

i z 5 

IE~.,.kl 
(b) 

Fig. 1. Enhancement of the probabilities by the presence of heavy 
atoms. The figure shows the exact (+)  and approximate (solid 
line) probability p+(h, k, h+k)  computed from equations (19) 
and (22) respectively for two compositions of a 32-atom asym- 
metric unit of Pi.  The IEI values are taken as [Enl = lEd = 1.50, 
and IE~+d ranges from 1 to 3. (a) C32, (b) C3oKr2. A faint line 
is drawn at p÷ = 0.95. 

1 < I~+kl <3,  in Fig. 2(c), as would be expected on 
the basis of the related Harker-Kasper inequality 
(Harker & Kasper, 1948) (note that U =  erE, and 
t~ = 1/201/2 for this composition, where U is the 
unitary structure factor). Similar qualitative 
behaviour is observed for other values of N, with 
increasing discrepancies for smaller N's and decreas- 
ing discrepancies for greater number of equal atoms 
in the unit cell. The overall impression from these 
tests is that the exact and approximate probabilities 
tend to agree best in the regions in which they are 
very useful or nearly useless, when regarded as sign- 
acceptance criteria, the regions of significant dis- 
crepancies being associated with moderately large 
triple products. 

Fig. 3 illustrates the effect of atomic heterogeneity 
on sign indications for a moderately large asymmetric 
unit, C95U5. Although the contribution of the uranium 
atoms (Z=92)  is dominant, the discrepancies at 
lower values of the triple product are significantly 
smaller than those obtained for an equal-atom struc- 
ture with five atoms in the asymmetric unit. Still, the 
favourable effect of the heavy atoms on the sign 

i.o r . + + + + + + + + + + _  

0.6~ 

i i i I i i I i i i I i i i I i I i i i i 

I 2 3 
(a) 

'.OF. + + + ÷ ÷ + ~  

I I I i I I I ! I I I I I I I I I I ! I " 1  

I 2 5 

(b) 

0.6 

I I I i i ! I i i i ! I i I I i ! i I i i 

I 2 5 

IEh+kl 
(c) 

Fig. 2. Effects of paucity of atoms for selected E values. The figure 
shows the exact (+)  and approximate (solid line) probability 
p+(h, k, h+k)  computed from equations (19) and (22) respec- 
tively. The composition of the asymmetric unit of P1 is C1o. the 
values of IEhl and I Ekl are taken to be the same and are given 
by: (a)lEd=lEkl----l '50, (b)IEd--IEd--2"00 and (c ) IEd- -  
[Ekl =2.50. A faint line is drawn at p+ =0.95. 

I.Ol- . .+++++++++++++++ 

o.6 F 
! I I t I i i I I I I I I I I I I I i i i 

i 2 5 

(a) 

P+6I ~ 

O. 

I I I I I I I I I I i I I I i i i I I I I 

I 2 5 

(b) 
I . O , . - + + ~ 1 ~ +  + + :  ." : : : : : : : : : : : : 

0.6 

I I I I i I i i I i i i i i I I i i i i i 

2 3 
IEh+kl 

(c) 
F,& 3. A small number of very heavy atoms in a moderately large 

unit. The figure shows the exact (+)  and approximate (solid 
line) probability p+(h, k, h+k)  computed from equations (19) 
and (22) respectively. The composition of the asymmetric unit 
of P1 is C95U5. The values of IEhl and IEtl are taken to be the 
same and are given by: (a) IEhl = IEkl = 1.50, (b) IEhl = IEkl = 
2.00 and (c) IEhl = IEkl = 2-50. A faint line is drawn at p+ = 0-95. 
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indications is appreciably greater for the probabilities 
computed from the exact expression (19) than from 
the approximate one (22). 

These preliminary numerical examples indicate 
that the application of the exact expression (19) to 
sign determination may promote this process in two 
respects. Firstly, an implementation of (19) in relevant 
application software may enhance the reliability of 
sign determination during the initial stages of this 
process. Perhaps more important, at least in the near 
future, are extensive comparisons and analyses of 
both types of expressions, which may lead to modified 
and, hopefully, more useful acceptance criteria that 
might enable one to use the conventional and faster 
approximate techniques to better advantage. 

There seem to be two requirements for the present 
method to be applicable to real situations. The first 
of these appears to be the need for accurate E values, 
since exact probabilities are being used. However, it 
is too early to make a more definite judgement and 
only experience may enable one to do so. The other 
requirement, and probably a more important one, is 
the very applicability of the usual statistical tech- 
niques, which are common to a$t direct methods, to 
the structure under consideration. As mentioned 
above, the exponents of the atomic phase factors are 
assumed to be uniformly distributed in the [0, 2~r] 
range. This assumption, most frequently made in 
structure-factor statistics, is likely to hold well if the 
coordinates of any atom are not all expressible in 
terms of simple fractions; more generally, the atomic 
coordinates are required to be rationally independent 
(Hauptman & Karle, 1953, 1959). However, con- 
spicuous rational dependence, especially among the 
heavy scatterers, is likely to invalidate the predictions 
of both the asymptotic (22) and the exact (19) 
expressions, and further studies of such predictable 
(e.g. fixed special positions) and unpredictable effects 
are certainly of interest. 

We also wish to point out what may be considered 
as an asset of the approximate expressions for Y.1 and 
Y~2- In none of the test calculations that were per- 
formed during the present work did we find an in- 
stance in which the approximate conditional proba- 
bility is greater than the exact one. This is in agree- 
ment with the remark made by Karle (1972) in his 
article on the exponential form of the joint probability 
distribution. The same is true of our previous study 
of the Y.1 relationship (Shmueli & Weiss, 1985), for 
I Ehl values that are of practical importance (i.e. 
exceeding a low-lying threshold of about one, below 
which the exact probabilities are underestimates of 
the approximate ones). We have no proof that this is 
completely general, but at least in the space group 
P1 and for a variety of parameter choices the approxi- 
mate probability indications are usually underesti- 
mates of the exact ones, which places the former on 
the safe side - provided, of course, the IEI values are 

sufficiently accurate and the assumption of uniformly 
distributed atomic phase factors is satisfied. 

We wish to thank one of the referees for very 
pertinent philosophical remarks. All the computa- 
tions related to this work were carded out at the Tel 
Aviv University Computation Center, on Cyber 170- 
855 and IBM 4381 computers, using a local library 
subroutine for the generation of Bessel functions of 
general order. 

APPENDIX A 
Statistical background 

Let x =  ( x l , . . . ,  xn) be a vector of n independent 
random variables, each obeying the same distribution. 
For example, x can be a vector of structure factors, 
which obey - for a given structure - a certain univari- 
ate distribution. The joint probability density function 
of the components of x, denoted by p (x )=  
p(x l , . . . ,  xn), is associated with a characteristic func- 
tion which is defined as 

O0 00"  

C(o~)= ~ . . .  ~ p(x)exp(i torx)dnx=(exp(i torx))  
- - 0 0  --CO 

(A1) 

(e.g. Cramrr, 1951). This characteristic function (c.f.) 
is a Fourier transform of the p.d.f, p(x), but it can 
also be regarded as an expectation value of the 
exponential exp (it~rx) in the integrand in (A1). The 
second viewpoint is of a greater practical importance, 
since the p.d.f, p(x) is usually initially unknown, while 
(exp (itoTx)) can often be evaluated from known 
statistical properties of the random vector x. Given 
the c.f. C(to), the p.d.f, p(x) can then be written as 
an inverse Fourier transform of (A1): 

o o  

p(x) = (2~) -~ ~ . . .  ~ C(to) exp (-itoTx)dnto. 
--OO --OO 

(A2) 

Equation (A2) can be brought to a manageable form, 
provided the c.f. has been exactly or approximately 
evaluated and the integral in (A2) can be solved. 
Except for some simple distributions, this integral 
cannot usually be evaluated in closed form and one 
often makes use of the moment-generating and 
cumulant-generating properties of the c.f. C(t~) (e.g. 
Kendall & Stuart, 1969) in constructing approximate 
expansions for the joint p.d.f., in terms of moments 
or cumulants, and polynomials that result from the 
term-by-term integration of (2). These expansions, 
known as Gram-Char ie r  or Edgeworth series (e.g. 
Cramrr, 1951), are usually truncated after the first 
few terms, the main reason being the rapidly increas- 
ing complexity of their successive terms. Detailed 
descriptions of the construction of such approxima- 
tions are given, for example , by Klug (1958) and 
Giacovazzo (1980). 
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An exact expression for the joint p.d.f, which, at 
least for small values of n, can often be accurately 
evaluated, can be obtained in the important case in 
which all the components of the random vector x may 
be non-zero only in a bounded range, say -xM < xi < 
+xM, i = 1 , . . . ,  n (Weiss, Shmueli, Kiefer & Wilson, 
1985; Shmueli & Weiss, 1985). One can then expand 
the joint p.d.f, p(x) in a Fourier series 

p(x)=(2xM)-"~ Cnexp(-wiurx/xM) (A3) 
u 

and write the Fourier coefficients, in the conventional 
manner, as 

x M X M 

Co = ~ . . .  ~ p(x) exp (~iurx/x~) d"x. (A4) 
- - X  M - - X  M 

Since, however, the random variables, xi, are confined 
to the [--XM, +XM] range, the probability of finding 
any of them outside this range is necessarily equal to 
zero. We can thus replace, with no loss of generality, 
the limits of integration in (A4) by +oo and obtain 
for the Fourier coefficients an expression analogous 
to (A1). In fact, the Fourier coefficients, Co, are then 
just the values of the characteristic function at the 
points: (~Ol,..., OJ,,)=(WUffXM,..., WU,,/XM). The 
practical significance of (A3) is now conditioned by 
our ability to evaluate the characteristic function, and 
by the convergence properties of the resulting Fourier 
summation. 

In some applications one has to deal with random 
vectors in which not all the components are indepen- 
dent. If, for example, x = (xl, x2, x3) and x3 depends 
on xl and x2, we shall still have a triple Fourier series 

to compute, but the integration leading to the charac- 
teristic function (or the Fourier coefficients) involves 
only the independent variables. For examples of such 
situations see Shmueli & Weiss (1985) and the deriva- 
tion in the text. 

References 

ABRAMO~MITZ, M. & STEGUN, I. (1972). Handbook of Mathemati- 
cal Functions. New York: Dover. 

BERTAUT, E. F. (1955). Acta Cryst. 8, 823-832. 
COCHRAN, W. & WOOLFSON, M. M. (1955). Acta Cryst. 8, 1-12. 
CRAM~R, H. (1951). Mathematical Methods of Statistics. Princeton 

Univ. Press. 
GIACOVAZZO, C. (1977). Acta Cryst. A33, 50-54. 
GIACOVAZZO, C. (1980). Direct Methods in Crystallography. New 

York: Academic Press. 
GRADSHTEYN, I. S. & RYZHIK, I. M. (1980). Tables of Integrals, 

Series and Products. New York: Academic Press. 
HARKER, D. & KASPER, J. S. (1948). Acta Cryst. 1, 70-75. 
HAUWrMAN, H. & KARLE, J. (1953). Solution of the Phase Problem. 

I. The Centrosymmetric Crystal. ACA Monograph No. 3. 
Pittsburgh: Polycrystal Book Service. 

HAUPTMAN, H. & KARLE, J. (1959). Acta Cryst. 12, 846-850. 
International Tables for X-ray Crystallography (1952). Vol. I.,Sym- 

metry Groups, edited by N. F. M. HENRY & K. LONSDALE. 
Birmingham: Kynoch Press. 

KARLE, J. (1972). Acta Cryst. B28, 3362-3369. 
KARLE, J. & GILARDI, R. D. (1973). Acta Cryst. A29, 401-407. 
KENDALL, M. G. & STUART, A. (1969). The Advanced Theory of 

Statistics, Vol. 1, 3rd ed. London: Charles Griffin. 
K.LUG, A. (1958). Acta Cryst. 11, 515-543. 
SHMUELI, U. (1982). Acta Cryst. A38, 362-371. 
SHMUELI, U. & WEISS, G. H. (1985). Acta Cryst. A41, 401-408. 
SHMUELI, U., WEISS, G. H., KIEFER, J. E. & WILSON, A. J. C. 

(1984). Acta Cryst. A40, 651-660. 
WEISS, G. H., SHMUELI, U., KIEFER, J. E. & WILSON, A. J. C. 

(1985). In Structure and Statistics in Crystallography, edited by 
A. J. C. WILSON, pp. 23-42. Guildedand, NY: Adenine Press. 

WOOLFSON, M. M. (1954). Acta C~.st. 7, 61-64. 

Acta Cryst. (1986). A42, 246-253 

Triplet Phase Invariants from Single Isomorphous Replacement or 
One-Wavelength Anomalous Dispersion Data, Given Heavy-Atom Information 

BY JEROME KARLE 

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375-5000, USA 

(Received 17 September 1985; accepted 14 January 1986) 

Abstract 
Certain general algebraic formulas for computing 
triplet phase invariants become accessible when struc- 
tural information is available concerning the replace- 
ment atoms in isomorphous replacement or the pre- 
dominant type of anomalously scattering atoms in 
one-wavelength anomalous dispersion experiments. 
The formulas of interest are presented and subjected 
to a number of test calculations to obtain insight into 
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their accuracy and to determine the effects of errors 
in the data. The formulas are simple to calculate and 
some possible strategies for their use are discussed. 

Introduction 
On the basis of certain mathematical and physical 
considerations that pertain to isomorphous replace- 
ment or anomalous dispersion experiments, rules 
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